ON A SOLUTION TO THE EQUATIONS OF MAGNETO-GASDYNAMICS

(I EESEENIIU URAVNENII MAGNITNOI GAZODINAMIEI)

```
PMM Vol.24. No.1, 1960, pp. 168-170
    I.M. IUR'EV
    (Moscom)
(Received 17 October 1959)
```

An investigation of strong and weak discontinuities in magneto-hydrodynamics is contained in a series of papers and books (see, for instance, [1-4]). In the following, the equations of planar flow in a magnetic field parallel to the velocity field are transformed under certain initial restraints to a linear equation of the Chaplygin type [5]. We will apply the result to a problem in which there are no strong discontinuities.

The equations of the steady motion of a gas with infinite conductivity in a magnetic field have the following form:
$\operatorname{div} H=0, \quad \operatorname{rot}(W \times H)=0, \quad \operatorname{div} \rho W=0, \quad(W \cdot \nabla) W=-\frac{\operatorname{grad} p}{\rho}-\frac{1}{4 \pi \rho} \mathbf{H} \times \operatorname{rot} \mathbf{H}$
where H is the magnetic field strength, p, ρ and W are respectively the pressure, density and vector velocity of the flow. If the flow is planar and the vector H lies in the plane of the flow, it follows from the second of Equations (1) that $\boldsymbol{W} \times H=$ const. If $\boldsymbol{W}|\mid H$ at one point, then W || H throughout the flow field. One can write

$$
\begin{equation*}
\mathbf{H}=k(x, y) \rho W \tag{2}
\end{equation*}
$$

where $k(x, y)$ is the coefficient of proportionality.
From the first and third equations of the system (1) we conclude that $k(x, y)=$ const along a streamline. The vector $H \ddot{x}$ rot H is perpendicular to the streamline. Therefore, the Bernoulli formula

$$
\begin{equation*}
w d w+\frac{d p}{\rho}=0 \tag{3}
\end{equation*}
$$

is correct along streamlines.
Let us assume $p=p(p)$ and let formula (3) be correct in any direction in the region of flow. We will also consider subsequently that $k=$ const throughout the flow, which obtains in particular for the undisturbed
parallel flow at infinity. On the basis of (3) we have

$$
\begin{equation*}
p=p(w), \quad p=-\int \rho(w) u d w \tag{4}
\end{equation*}
$$

from which there follows

$$
\begin{equation*}
\frac{1}{\rho} \operatorname{grad} p=-\operatorname{grad} \frac{w^{2}}{2} \tag{5}
\end{equation*}
$$

On the other hand, $(W \cdot \nabla) W=\operatorname{rot} W \times W+\operatorname{grad} 1 / 2 W^{2}$. Therefore, the last equation of the system (1) reduces to the form

$$
\begin{equation*}
\operatorname{rot} \mathbf{W} \times \mathbf{W}=-\frac{1}{4 \pi \rho} \mathbf{H} \times \operatorname{rot} \mathbf{H} \tag{6}
\end{equation*}
$$

Projecting Equation (6) on to the coordinate axes x, y and taking formula (2) into account, we obtain

$$
\begin{equation*}
\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=\frac{k^{2}}{4 \pi}\left(\frac{\partial \rho v}{\partial x}-\frac{\partial \rho u}{\partial y}\right), \quad \text { иліІ } \quad \frac{\partial v^{*}}{\partial x}-\frac{\partial u^{*}}{\partial y}=0 \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{*}=w^{*} \cos \theta, \quad v^{*}=w^{*} \sin \theta, \quad w^{*}=w\left(1-\frac{k^{2}}{4 \pi} p\right) \tag{8}
\end{equation*}
$$

and θ is the angle of the velocity vector with the abscissa.
The existence of a stream function $\psi(x, y)$

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=-v \rho(w)=-v^{*} p^{*}\left(w^{*}\right), \quad \frac{\partial \psi}{\partial y}=u \rho(w)=u^{*} \rho^{*}\left(w^{*}\right) \quad\left(\rho^{*}=\frac{\rho}{1-k^{2} \rho / 4 \pi}\right) \tag{9}
\end{equation*}
$$

follows from the continuity equation.
Equation (7) permits a fictitious potential ϕ to be introduced in accordance with the formula

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x}=u^{*}, \quad \frac{\partial \varphi}{\partial y}=v^{*} \tag{10}
\end{equation*}
$$

As is well-known from the equations of total differential expressions

$$
\begin{equation*}
d x=\frac{\cos \theta}{w^{*}} d \varphi-\frac{\sin \theta}{\rho^{*} w^{*}} d \psi, \quad d y=\frac{\sin \theta}{w^{*}} d \varphi+\frac{\cos \theta}{\rho^{*} x c^{*}} d \psi \tag{11}
\end{equation*}
$$

one can derive the following system of equations for the unknown function ϕ and ψ :

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \theta}=\frac{w^{*}}{\rho^{*}} \frac{\partial \psi}{\partial w^{*}}, \quad \frac{\partial \varphi}{\partial w^{*}}=w^{*} \frac{d}{d w^{*}}\left(\frac{1}{\rho^{*} w^{*}}\right) \frac{\partial \psi}{\partial \theta} \tag{12}
\end{equation*}
$$

The system (12) has the canonical form

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \theta}=\sqrt{K} \frac{\partial \psi}{\partial s}, \quad \frac{\partial \varphi}{\partial s}=-\sqrt{\kappa} \frac{\partial \psi}{\partial \theta} \tag{13}
\end{equation*}
$$

where the functions of the velocity $\sqrt{ } K$ and s are related to w^{*} and ρ^{*} in
accordance with (6) by the formulas

$$
\begin{equation*}
\frac{d Q}{d s}=-V \bar{K} P, \quad Q=\sqrt{K} \frac{d P}{d s} \quad\left(P=w^{*-1}, Q=\left(\rho^{*} w^{*}\right)^{-1}\right) \tag{14}
\end{equation*}
$$

hence

$$
\begin{equation*}
d s=\left(\frac{P^{\prime}\left(w^{*}\right) Q^{\prime}\left(w^{*}\right)}{P\left(w^{*}\right) Q\left(w^{*}\right)}\right)^{1 / 2} d w^{*}, \quad \sqrt{K}=\left(\frac{Q\left(w^{*}\right) Q^{\prime}\left(w^{*}\right)}{P\left(w^{*}\right) P^{\prime}\left(w^{*}\right)}\right)^{1 / 2} \tag{45}
\end{equation*}
$$

Substituting expressions for the functions $P\left(w^{*}\right)$ and $Q\left(w^{*}\right)$ into (15) and taking into consideration formulas (8) and (9) and the formula for determining the velocity of sound

$$
\begin{equation*}
a^{2}=\frac{d p}{d p}=-\frac{w p(w)}{p^{\prime}(w)} \tag{16}
\end{equation*}
$$

we obtain
$\sqrt{K}=\frac{1}{\rho}\left(\frac{\left(1-M^{2}\right)(1-m \rho)^{8}}{1-m \rho\left(1-M^{2}\right)}\right)^{1 / 2}, d s= \pm\left(\frac{\left(1-M^{2}\right)\left[1-m \rho\left(1-M^{2}\right)\right]}{1-m \rho}\right)^{1 / s d w} \frac{w}{w}\left(m=k^{2} / 4 \pi\right)$
where M is the Mach number. The negative sign in (17) is taken for the interval of variation of w in which $d w^{*} / d s<0$. For imaginary values of s and $\sqrt{ } K$ we have the hyperbolic system of equations

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \theta}=\sqrt{\chi} \frac{\partial \psi}{\partial \sigma}, \quad \frac{\partial \varphi}{\partial \sigma} \equiv \sqrt{\chi} \frac{\partial \psi}{\partial \theta} \quad(\sigma=-i s, \sqrt{\chi}=-i \sqrt{K}) \tag{18}
\end{equation*}
$$

In the case $p=$ const ρ^{κ}, where κ is the ratio of specific heat coefficients, formulas (17) and (21) take the form

$$
\begin{gather*}
\sqrt{K}=\left(\frac{\left(1-\lambda^{2}\right)\left[1-k_{1}\left(1-\lambda^{2} / h^{2}\right)^{\gamma}\right]^{3}}{\left(1-\lambda^{2} / h^{2}\right)^{h^{2}}\left[1-k_{1}\left(1-\lambda^{2} / h^{2}\right)^{\gamma}\left(1-M^{2}\right)\right]}\right)^{1 / 2} \tag{19}\\
d s= \pm\left(\frac{\left(1-\lambda^{2}\right)\left[1-k_{1}\left(1-\lambda^{2} / h^{2}\right)^{\gamma}\left(1-M^{2}\right)\right]}{\left(1-\lambda^{2} / h^{2}\right)\left[1-k_{1}\left(1-\lambda^{2} / h^{2}\right)^{\gamma}\right]}\right)^{1 / 2} \frac{d \lambda}{\lambda} \\
\left(k_{1}=\frac{k^{2}}{4 \pi}\left(\frac{x+1}{2 x} a_{\bullet}^{2}\right)^{\gamma} ; h^{3}=\frac{x+1}{x-1}, \gamma=\frac{1}{x-1}, x \neq 1\right)
\end{gather*}
$$

where λ is the magnitude of the relative velocity and a_{*} is the critical velocity of sound. If $k_{1}<1$, the system (13) is correct for $\lambda<1$ and the system (18) is correct for $\lambda>1$. The case $k_{1}>1$ is of greater interest. Then the quantities

$$
1-k_{1}\left(1-M^{2}\right)\left(1-\lambda^{2} / h^{2}\right)^{\gamma}, \quad 1-k_{1}\left(1-\lambda^{2} / h^{2}\right)^{\gamma}
$$

which are negative in the neighborhood of $\lambda=0$ vanish respectively for $\lambda_{1}<1$ and $\lambda_{2}=h\left(1-k_{1}^{1-\kappa}\right)$, where $\lambda_{2}>\lambda_{1}$. In the interval of velocity variation $0<\lambda<\lambda_{1}$ we have for every λ_{2} the elliptic system of equations (13). If $\lambda_{2}<1$, we have for the subsonic interval $\lambda_{1}<\lambda<\lambda_{2}$ the hyperbolic system of equations (18), and subsequently for the interval
$\lambda_{2}<\lambda<1$ the elliptic system of equations (13), and finally for $\lambda>1$ again the system (18). If $\lambda_{2}>1$, the system (18) is correct for the intervals $\lambda_{1}<\lambda<1$ and $\lambda_{2}<\lambda<h$, and the elliptic system of equations (13) for the supersonic interval $1<\lambda<\lambda_{2}$. If

$$
\lambda_{2}=1, \text { или } k_{1}=\left(\frac{h}{h-1}\right)^{\gamma}
$$

the system (13) is correct for the whole interval $\lambda_{1}<\lambda<h$.
Extracting the principal parts of the formulas (19) in the neighborhood of the singular points λ_{1} and $\lambda_{2} \neq 1$, we find that in the first case $\sqrt{ } K \approx$ const $s^{-1 / 3}$ and in the second case $\sqrt{ } K=$ const s, where s is to becomputed respectively for λ_{1} and λ_{2}.

For $k=0$ we have the usual equations of Chaplygin. For separate form ulas $p=p(\rho)$ and values k_{1} a system of equations in Legendre functions can be found which are more convenient for solution than the system (13).

We will pass from the functions ϕ, ψ to the functions Φ, Ψ by means of the Legendre transformation

$$
\begin{equation*}
\Phi=x \frac{\partial \varphi}{\partial x}+y \frac{\partial \varphi}{\partial y}-\varphi, \quad \Psi=x \frac{\partial \psi}{\partial x}+y \frac{\partial \psi}{\partial y}-\psi \tag{20}
\end{equation*}
$$

We have

$$
\begin{equation*}
x=\Phi_{u^{*}}=-\Psi_{t}, \quad y=\Phi_{v^{*}}=\Psi_{r} \quad\left(r=\frac{\cos \theta}{Q}, t=\frac{\sin \theta}{Q}\right) \tag{21}
\end{equation*}
$$

In the independent variables s, θ the system (21) has the following form (see, for instance, [7])

$$
\frac{\partial \Psi}{\partial \theta}=-\sqrt{\overline{K_{1}}} \frac{\partial \Phi}{\partial s}, \frac{\partial \Psi}{\partial s}=\sqrt{\overline{K_{1}}} \frac{\partial \Phi}{\partial \theta} \quad\left(\sqrt{\overline{K_{1}}}=\sqrt{\bar{K}}\left[\frac{P}{Q}\right]^{2}\right)
$$

Approximate and exact methods of solution of the Chaplygin equations can be used for the solution of problems of a given flow of gas in a magnetic field. For the approximations one must use a closure condition. For instance, if in the order of the approximation some other function $f(s)$ is taken instead of the rigorous dependence on $V K(s)$, after substituting the function $f(s)$ in place of $\sqrt{ } K$ in Equation (14) we obtain an equation for determining the functions $P(s)$ and $Q(s)$. We obtain the dependence of ρ on w in the parametric form $\rho=\rho(s), w(s)$ by means of the formulas $w^{*}=P^{-1}, \rho^{*}=P / Q$ and the formulas (8) and (9).

BIBLIOGRAPHY

1. Landau, L.D. and Lifshitz, E.M., Elektrodinamika splozhnyh sred (Electrodynamics of continuous enedia). GITTI, 1957.
2. Staniukovich, K.P., Kaplan, S.A. and Baum, P.A., Vvedenie kosmicheskuiu gezodinaniku (Introduction to cosaic gasdynanics). Moscow, 1958.
3. Logan, M.N., Magnitodinamika ploskikh i osesimetrichnykh techenii gaza s beskonechnoi elektricheskoi provodimost'iu (Magnetodynamics of planar and axisymmetric gas flows with infinite electrical conductivity). PWY Vol. 23, No. 1, 1959.
4. Zhigulev, V.N., Analiz slabykh i sil'nykh razryvov veagitnoi gidrodinamike (Analysis of weak and strong discontinuities in magnetohydrodynanics). PMY Vol. 23, No. 1, 1959.
5. Chaplygin, S.A., O gazovyk straiakh (On gas jets). Sobr. soch., Vol. 2, OGIZ, 1948.
6. Khristianovich, S.A., Priblizhennoe integrirovanie uravnenii sverkhzrukovogo techeniia gaza (Approximate integration of equations of supersonic gas flow). PMY Vol. 11, No. 2, 1947.
7. Sedov, L. I., X obshehei teorii plosho-parallel'nykh dyizhenii gaza (On the general theory of plane parallel gas motion). Sb. statei, No. 4, Teoreticheskaia gidromekhanika (Theoretical hydromechanics), 1949.
